本文从大数据本身的特点及其应用需求出发,结合数据可视化的研究现状,介绍了适用于大数据的数据可视化技术;分析在大数据条件下数据可视化所要解决的8个关键问题;讨论了针对大数据可视化应用需求自主研发的交互式可视化设计平台AutoVis及其应用。大数据可视化是一个面向应用的研究领域,本文重点从应用实践的角度,讨论在大数据背景下大数据可视化内涵、研究进展、相关技术与产品以及所面临的一系列挑战。大数据可视化内涵数据可视化就是将抽象的“数据”以可见的形式表现出来,帮助人理解数据。大数据可视化相对传统的数据可视化,处理的数据对象有了本质不同,在已有的小规模或适度规模的结构化数据基础上。大数据可视化需要有效处理大规模、多类型、快速更新类型的数据。这给数据可视化研究与应用带来一系列新的挑战,上海数据可视化定制。数据可视化这一概念自1987年正式提出,经过30余年的发展,逐渐形成3个分支:科学计算可视化(scientificvisualization),上海数据可视化定制,上海数据可视化定制、信息可视化(informationvisualization)和可视分析(visualanalytics)。近些年来,这3个子领域出现了逐渐融合的趋势。大数据可视化是指有效处理大规模、多类型和快速变化数据的图形化交互式探索与显示技术。其中。大数据可视化公司排名!上海数据可视化定制
数据交互大数据可视化使用者需要通过可视化与图表背后的数据和处理逻辑进行交互,由此反应使用者的个性化需求,帮助用户用一种交互迭代的方式理解数据。在传统的交互手段基础上,更加自然的交互方式,将有助于使用者与数据更好的交互,也有助于拓展大数据可视化产品的使用范围与应用场景。大数据可视化技术与产品所面临主要挑战的同时也对其发展带来了新机遇,例如Yu等提出的面向数据流式可视化的自然语言交互接口,通过自然语言与可视化常见操作的映射实现。微软Excel软件集成自然语言交互,其中的AnnaParser算法将数据表进行抽象并结合表格知识理解实现语义理解。AutoVis如前所述,大数据可视化面临一系列挑战。为此,课题组自主研发了数据感知的交互式可视化设计平台AutoVis,目标是让大数据的可视化过程更加简单,辅助使用者快速完成从数据到图表的设计过程,包括数据定义、图表设计、映射过程、图表交互与看板服务。数据定义AutoVis支持IoTDB、PostgreSQL、MySQL、SQLServer、SQLLite等常用数据库类型,以及提供RESTfulAPI接口的数据服务。设计实现了抽象数据集构建与计算技术,支持不同数据的自由组合,通过抽象数据集归一化,实现数据集的快速生成。上海数据可视化定制如何建设工业大数据可视化平台?工业数据可视化案例!
包括数据规模、数据融合、图表绘制效率、图表表达能力、系统可扩展性、快速构建能力、数据分析与数据交互等。数据规模大数据规模大、价值密度降低,受限于屏幕空间,所能显示的数据量有限。因此为了有效显示使用者所关注的数据和特征,需要采用有效的数据压缩方法。目前已有的方法针对数据本身进行采样或聚合,未考虑数据可视化的显示特性。近期一些学者提出了针对特定可视化场景的数据压缩方法。但是目前依然缺少通用的面向可视化的数据压缩方法,也缺少实际应用的产品。数据融合大数据的另一个表现是数据类型多样,常常分布于不同的数据库。如何融合不同来源、不同类型的数据,为使用者提供统一的可视化视角,支持可视化的关联探索与关系挖掘,是一个重要的问题。其中涉及数据关联的自动发现、多类型数据可视化、知识图谱构建等多个技术问题。图表绘制效率随着数据规模的增加,图表可视化的效率问题越来越凸显。目前,有些可视化产品开始采用WebGL借助GPU实现平行绘制。越来越多的数据可视化产品采用B/S架构,其性能一定程度上优先于浏览器;另外,由于跨终端需求越来越普遍,也对图表绘制提出了更多挑战。图表表达能力随着产生数据的来源增加,数据类型不断增加。
需在大屏整体分辨率上切分出不同的区域,根据业务指标的重要程度,将不同的指标以可视化形式呈现在不同区域,做到主次分明,突出重点。布局设计主要根据梳理好的业务指标进行,业务指标安排在中间位置较大区域,其余的指标按优先级依次在指标周围展开。一般把有关联关系的指标在同一区域展现,这样更有助于观看者的理解。,UI整体风格一般用深色调,如黑色背景,蓝色或绿色的配色方案,让信息更好的聚焦,深色调看上去更柔和舒服不刺眼,也会较省电。UI设计效果图完成后,可先投屏到大屏上模拟真实效果,保证在大屏屏幕的颜色、效果呈现符合设计要求。下图是百分点某大屏项目的UI设计图。6.可视化开发开发阶段,开发工程师根据产品原型图、UI效果图、详细设计文档,选择合适的开发环境、开发工具、开发语言等,统一每个模块、页面的命名规范。在可视化开发过程中通常会使用到以下图表库。7.现场调试、交付大屏项目涉及到现场调试,确保每个环节运行正常,包括图站的融屏、网络、软件部署、大屏图像显示是否完整、控制端通信是否正常,并根据现场出现的问题做及时调整。三、百分点可视化系统设计亮点1.智能控制在智能展厅的建设中,除了大屏。数据可视化的难点及解决方案。
这份报告之中强调了新的基于计算机的可视化技术方法的必要性。随着计算机运算能力的迅速提升,人们建立了规模越来越大,复杂程度越来越高的数值模型,从而造就了体积庞大的数值型数据集。同时,人们不但利用医学扫描仪和显微镜之类的数据采集设备产生大型的数据集,而且还利用可以保存文本、数值和多媒体信息的大型数据库来收集数据。因而,就需要高级的计算机图形学技术与方法来处理和可视化这些规模庞大的数据集。数据可视化数据可视化一直以来,数据可视化就是一个处于不断演变之中的概念,其边界在不断地扩大。数据可视化指的是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。与立体建模之类的特殊技术方法相比,数据可视化所涵盖的技术方法要多。数据可视化相关分析编辑数据可视化数据采集数据采集(有时缩写为DAQ或DAS),又称为“数据获取”或“数据收集”,是指对现实世界进行采样,以便产生可供计算机处理的数据的过程。通常,数据采集过程之中包括为了获得所需信息,对于信号和波形进行采集并对它们加以处理的步骤。医疗数据可视化系统怎么做?医疗数据可视化系统!上海数据可视化定制
大屏数据可视化设计,大屏可视化解决方案公司。上海数据可视化定制
OHLC图通常用作交易工具。螺旋图沿阿基米德螺旋线绘制基于时间的数据。堆叠式面积图的原理与简单面积图相同,但它能同时显示多个数据系列。量化波形图可显示不同类别的数据随着时间的变化。另外,具有空间位置信息的时序数据,常常将上述可视化方法地图结合,例如轨迹图。面向可视化的数据采样方法面向可视化的时序数据采样,主要针对时序数据的折线图视觉效果进行优化。此类研究的主要目标为,从时序数据中选择小部分时序数据,利用折线图上的点与连线的视觉效果,使得选取数据的折线图视觉效果与原始数据的可视化结果尽可能接近。数据可视化生产方式编程方式根据语言类型可以分为函数式编程与声明式编程。函数式编程可以根据图表元素封装层级分为更基础的图形编程接口。上海数据可视化定制
上海艾艺信息技术有限公司主要经营范围是商务服务,拥有一支专业技术团队和良好的市场口碑。艾艺致力于为客户提供良好的软件开发,APP开发,小程序开发,网站建设,一切以用户需求为中心,深受广大客户的欢迎。公司从事商务服务多年,有着创新的设计、强大的技术,还有一批专业化的队伍,确保为客户提供良好的产品及服务。艾艺立足于全国市场,依托强大的研发实力,融合前沿的技术理念,飞快响应客户的变化需求。
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。